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Experiments on Evolving Software Models of Analog Circuits

Jason D. Lohn

Analog circuits are of great importance in elec-
tronic system design since the world is fundamen-
tally analog in nature. While the amount of digital
design activity far outpaces that of analog design,
most digital systems require analog modules for
interfacing with the external world. It was recently
estimated that approximately 60% of digital appli-
cation-specific integrated circuit designs incorpo-
rated analog circuits. With challenging analog
circuit design problems and few analog design
engineers, there are economic reasons for
automating the analog design process, especially
time-to-market considerations.

Techniques for analog circuit design automation
began appearing about two decades ago. These
methods incorporated heuristics [6], knowledge
bases [1], simulated annealing [5], and other
algorithms. Efforts using techniques from evo-
lutionary computation began appearing over the
last few years. These include the use of genetic
algorithms to select electronic component val-
ues (for example, the resistance value of a
resistor), to select circuit topologies, and to
design amplifiers using a limited set of canned
topologies [4]. A genetic programming-based
analog circuit design system has been demon-
strated in which the circuit sizes, component
values, and the circuit topologies are determined
automatically [3]. The genetic-algorithm systems
typically represent circuit structures as vectors of
parameters encoded in binary strings, while the
genetic programming system manipulates tree 
data structures.

Because evolutionary search is well-known to be
sensitive to how candidate solutions are encoded,
we devised and experimented with a new encoding
system that consists of a sequence of circuit-con-
structing instructions. Like the “turtle’’ in the lan-
guage Logo that can be commanded to draw an
image, our language uses an automaton pro-
grammed to construct an electrical circuit. The
automaton is called a circuit-constructing robot or
cc-bot, and the language that programs it is very
small and, in its current incarnation, contains only
component-placing instructions. The cc-bot lan-
guage has the desirable property that virtually all

possible sequences of instructions result in a valid
electrical circuit. This property is important
because it greatly limits the “out-of-bounds’’
regions of the search space containing “illegal’’ cir-
cuits. Thus, an evolutionary algorithm will spend
nearly all its time generating valid electrical cir-
cuits. While this is a considerable achievement, the
ability to generate every possible circuit topology is
lost. This is not considered a drawback for the cir-
cuit types we investigated since a vast number of
topologies and existing circuit designs could be
encoded using the cc-bot approach.

To construct a circuit, a template circuit is
specified that consists of a power source and an
output terminal. As shown in Figure 1, the evolved
circuit grows within the dashed box. 

Given a list of instructions, the cc-bot begins at

the start node and constructs a circuit by placing
components sequentially until the last one in the
list is placed. If this last component does not con-
nect to the output terminal, by convention it is
forced to connect there.

For each component type there are five instruc-
tions: move-to-new, cast-to-previous, cast-to-
ground, cast-to-input, cast-to-output. If it is
desirable to use only resistors and capacitors, for
example, then 10 instructions are required: five for
resistors and five for capacitors. Each instruction
takes a component value (for example, 12.5 ohms)
as its sole argument. The move-to-new instruction
places one end of a component at the active node
and the other at a newly created node (the
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Figure 1. Template circuit: the evolved circuit is located
between fixed input and output terminals. 
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“active’’ node is the current location of the cc-
bot). The newly created node then becomes the
active node. The cast-to instructions place one end
of the component at the active node and the other
at either the ground, input, output, or previously
created node. After executing a cast-to instruc-
tion, the cc-bot remains at its current location.
Illustrations of two instructions that place resistors
are shown in Figure 2.

Using a hybrid of a standard genetic algorithm
and a genetic program, we performed three experi-
ments in which the goals were to evolve low-pass
filters. A low-pass filter is a circuit that allows low
frequencies to pass through it, but stops high fre-
quencies from doing so. Below the “passband’’ fre-
quency the input signal is passed to the output,
potentially reduced (attenuated) by a specified
number of decibels (dB). Above the “stopband’’
frequency, the input signal is markedly decreased.
Between the passband and stopband the frequency
response curve transitions from low to high attenu-
ation. Filter design is a well-understood discipline
within circuit design. Its “design space’’ has been
widely explored [2], which allows us to compare our

evolved designs to existing designs.
In general, evolutionary algorithms are well-

suited for parallelization. In our system, circuit
simulations run as parallel processes on a network
of workstations. A host computer maintains the
population of individuals and distributes them to
worker nodes using socket connections. The worker
nodes decode the individuals into representations
suitable for the circuit simulator. The circuits are
then simulated and fitness values are calculated.
Hundreds of individuals and fitness scores are
packaged into a single message so that network
congestion delays are minimized.

The design tasks posed in our three experiments
increased in difficulty, starting first with a low-
pass filter found in an electronic stethoscope
design. Our system found a suitable circuit after
evaluating approximately 10,000 circuits. The goal
of the second experiment was to find a filter with
more stringent specifications called a 3rd-order
Butterworth filter. A circuit was found during a run
that evaluated roughly 400,000 circuits and lasted
approximately four hours using six workstations.

The third experiment had the most stringent
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Figure 2. Effect of placing a resistor with move-to-new and cast-to-ground instructions. 

Figure 3. Evolved low-pass filter design. Figure 4. Frequency response of evolved low-pass filter.
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specifications. We required the passband to have a
very small attenuation of 0.01dB, the stopband to
have a very high attenuation of 60dB, and the transi-
tion to occur between 1kHz and 2kHz. In other words,
the output signal should be roughly 99.8% of the
input in the passband, and 1000 times smaller than
the input in the stopband. After running for six hours
on five workstations, and completing roughly 930,000
circuit evaluations, an evolved circuit that met the
specifications was found. The evolved circuit and its
frequency response are shown in Figures 3 and 4. 

Our experimental results using a new circuit-con-
structing language were encouraging. Although our
technique is topology-limited, the ability of our sys-
tem to produce useful circuits was demonstrated.
Recently we extended our circuit-constructing lan-
guage to incorporate transistors. The initial experi-
mental results were encouraging: amplifiers, which
are very common in analog design, having high gain
values were found in under six million circuit evalua-
tions. With the previous successes in evolving analog
circuits, and the encouraging results of our system,
we are optimistic that a subset of analog circuit
design tasks may be routinely accomplished by means
of evolutionary computation in the future.
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